
2025/07/04 11:08 1/4 Basics for creating a plugin

LoxBerry Wiki - BEYOND THE LIMITS - https://wiki.loxberry.de/

 Diese Seite wurde noch nicht vollständig übersetzt. Bitte helfen Sie
bei der Übersetzung.
(diesen Absatz entfernen, wenn die Übersetzung abgeschlossen wurde)

Basics for creating a plugin

If you understand how this code works, you can develop a LoxBerry plugin!

Developing LoxBerry plugins is not too difficult for anyone who has ever scripted or programmed
anything. Conveniently, there is now the Internet where you can find examples or use them directly.

Some LoxBerry plugins, for example, have emerged from already existing scripts or programs from
the Internet, which primarily required a web interface for the configuration of these scripts.

If you are planning a plugin for the first time, break down the development into the following parts:

The program that executes the actual function of your plugin.
A configuration file from which your program reads the parameters it needs.

This gives you the true functionality. Now all the details are missing, so the next steps are:

A web interface to read and write the configuration file
If necessary, a cronjob to execute your program at intervals

Step 0: Update your LoxBerry to the latest pre-release

This will give you all the bug fixes and new functions on your Raspberry.

Step 1: Create plugin directory

Start by downloading (not installing!) the sample plugin and unpacking it on your PC. It contains Perl
or PHP code, but any language can be used for the implementation. Perl and PHP have the advantage
that LoxBerry offers an SDK for this, which makes many tasks easier (e.g. creating the web interface
or reading the LoxBerry configuration and creating log files).

Step 2: customize plugin.cfg

In your copy of the sample plugin, adjust the name of the plugin, author, version number, etc. By

https://wiki.loxberry.de/_detail/entwickler/1218019522.png?id=en%3Aentwickler%3Agrundlagen_zur_erstellung_eines_plugins

Last
update:
2025/01/23
19:34

en:entwickler:grundlagen_zur_erstellung_eines_plugins https://wiki.loxberry.de/en/entwickler/grundlagen_zur_erstellung_eines_plugins?rev=1737657276

https://wiki.loxberry.de/ Printed on 2025/07/04 11:08

changing this data, it is now your plugin.

Step 3: Install your plugin

Zip the directory and install it on the LoxBerry. Ignore any installation errors - these come from the
sample data of the sample plugin and can be corrected later. You will then find your plugin in the
plugin administration. LoxBerry has created directories corresponding to the name of your plugin on
the Raspberry.

Folder Function

/opt/loxberry/webfrontend/htmlauth/plugins/deinplugin/ Directory for your web interface
(authentication required)

/opt/loxberry/webfrontend/html/plugins/deinplugin/ Directory for Websites without authentication

/opt/loxberry/templates/plugins/deinplugin/
Especially when using Perl and
HTML::Template, you store HTML templates
here. The lang subdirectory contains the
Language files.

/opt/loxberry/config/plugins/deinplugin/ Directory for your configuration files

/opt/loxberry/bin/plugins/deinplugin/ Directory for Executable files that should not
be accessible from the web

/opt/loxberry/log/plugins/deinplugin/ Directory for your log files

/opt/loxberry/data/plugins/deinplugin/ Directory for any other data that your plugin
requires or generates

Step 4: Implement function

Decide whether the function of your plugin should be triggered time-controlled or via a web call.

Time-controlled: Develop your program in your bin directory
Web call: Develop your program in your webfrontend/htmlauth directory

Program your functionality and use a config file in your config directory for everything that should
later be customizable by the user on the web.

For Perl and PHP, include the LoxBerry library LoxBerry::System or loxberry_system.php - use its
global variables for your directories! For other programming languages, you have to write your own
routines to find out your plugin directory. The name of your plugin directory is variable, so you must
not hardcode it.

Look through the SDK for your language - For example, if you need the miniserver configuration
from LoxBerry, there is the SDK function get_miniservers. To create log files there is LogBerry::Log or
loxberry_log.php.

Step 5: Implementing the web interface

When your functions are running, develop your web interface for them.

2025/07/04 11:08 3/4 Basics for creating a plugin

LoxBerry Wiki - BEYOND THE LIMITS - https://wiki.loxberry.de/

Use the Perl-Lib LoxBerry::Web or for PHP loxberry_web.php. Look through the functions of the
SDK and use code from the sample plugin.

Use readlanguage (Perl, PHP) to offer alternative languages for your plugin.

Step 6: Customize installation

If your things work reasonably well on the installed LoxBerry, update your plugin package:

Copy the new program files into the directory from which you initially created the ZIP with the
modified plugin.cfg.
If special steps are required during the installation or during the plugin update, update the
install scripts in this directory (e.g. save the config during the update)
If special Debian packages are required for your plugin, update the apt file in the apt folder and
add the package names there.

Step 7: Test and continue

Before you rezip and install your source folder, make sure that all files from the LoxBerry are really in
your source on the PC - during the update, all folders on the LoxBerry are deleted in order to recreate
them during the installation.

You can then test the installation. This usually reveals any errors in the installation scripts. You can
then test everything in the same way as it behaves for other users.

Step 8: Get help

Some things are unusual the first time, so don't despair but seek advice.

All LoxBerry plugin developers regularly check the LoxForum in the developer area for
LoxBerry: https://www.loxforum.com/forum/projektforen/loxberry/entwickler

We also run a WhatsApp group for LoxBerry developers, where troubleshooting is much faster. Please
join with Christian Fenzl Contact us (incl. name and telephone number).

Step 9: Public test

Finally, we would first offer your alpha/beta version in the LoxForum for testing (with a corresponding
disclaimer that it is still alpha). Once the major problems have been resolved, you should create and
document your new plugin in the LoxWiki. Do it like the other plugin authors do.

Recommendations

https://www.loxforum.com/forum/projektforen/loxberry/entwickler
https://loxwiki.atlassian.net/wiki/people/6166fb1fc5388b0069f9351f?ref=confluence

Last
update:
2025/01/23
19:34

en:entwickler:grundlagen_zur_erstellung_eines_plugins https://wiki.loxberry.de/en/entwickler/grundlagen_zur_erstellung_eines_plugins?rev=1737657276

https://wiki.loxberry.de/ Printed on 2025/07/04 11:08

Code management with GitHub

With the Windows software GitHub Desktop, you can host your plugin source directory as a public
repository on Github. The advantages are: You have real code management with change tracking and
the ability to undo changes. In addition, other developers can support you more easily with problems
or errors if they have direct insight into your code.

LoxBerry's built-in update function for plugins is optimized for GitHub.

From:
https://wiki.loxberry.de/ - LoxBerry Wiki - BEYOND THE LIMITS

Permanent link:
https://wiki.loxberry.de/en/entwickler/grundlagen_zur_erstellung_eines_plugins?rev=1737657276

Last update: 2025/01/23 19:34

https://wiki.loxberry.de/
https://wiki.loxberry.de/en/entwickler/grundlagen_zur_erstellung_eines_plugins?rev=1737657276

	Basics for creating a plugin
	Step 0: Update your LoxBerry to the latest pre-release
	Step 1: Create plugin directory
	Step 2: customize plugin.cfg
	Step 3: Install your plugin
	Step 4: Implement function
	Step 5: Implementing the web interface
	Step 6: Customize installation
	Step 7: Test and continue
	Step 8: Get help
	Step 9: Public test
	Recommendations
	Code management with GitHub

