2025/04/10 11:17 1/7 7a. Regenmenge

7a. Regenmenge

Hintergrund

Die Erfassung der Regenmenge gehört zu jeder Wetterstation. Automatische Niederschlagsmesser verwenden meist einen "Kipplöffel" oder eine Kippwaage, auch Wippe genannt. Bei beiden Systemen füllt sich jeweils eine Schale mit Niederschlagswasser. Bei einem bestimmten Gewicht kippt sie nach unten und entleert sich. Aus der Anzahl der Kippbewegungen kann die Niederschlagsmenge berechnet werden. Die Kippungen werden vielfach mit einem Magneten an der Kippeinrichtung und einem gegenüber fixierten Reedkontakt elektrisch erfasst. Der grundsätzliche Unterschied zwischen Kipplöffel und Kippwaage besteht in der konstruktiven Ausführung. Der Kipplöffel ist geformt wie ein Löffel und kann nur auf einer Seite Wasser aufnehmen. Die Kippwaage ist empfindlicher und besitzt eine zweigeteilte Messkammer. Dadurch gehen auch während des eigentlichen Umkippvorgangs keine Regentropfen verloren, wie es beim Löffel der Fall sein kann.¹⁾

Nach den Richtlinien des Deutschen Wetterdienstes beträgt die Höhe der Auffangfläche des Niederschlagsmessgeräts in der Ebene 1 m über dem Grund. Aufgrund der zu erwartenden Schneehöhe wurde die Höhe bei einer Stationshöhe über 500 m ü. NN auf 1,5 m und bei einer Stationshöhe von über 800 m ü. NN auf 2 m über Grund festgelegt. Für klimatologisch sinnvolle Messungen muss der Niederschlagsmesser auf einem geeigneten und für das lokale Klima repräsentativen Ort aufgestellt werden. Dieser muss einerseits hinreichend offen sein, damit auch schräg einfallender Niederschlag zuverlässig aufgefangen werden kann, andererseits ist aber auch eine gewisse Abschirmung vor Starkwind nötig, um den Windfehler durch eine Überwehung des Auffanggefäßes möglichst gering zu halten. Die vom Prinzip her einfache Niederschlagsmessung ist in der Praxis vergleichsweise großen Fehlern unterworfen. Allgemein sind Messunsicherheiten von 10 bis 20 % kaum zu vermeiden. Je nach Wetterlage müssen die Messergebnisse entsprechend interpretiert werden.²⁾

Einkaufsliste

Komponente	Preis	Bezugsquelle (Beispiel)
Rainfall Amount Sensor Module, 0.2MM PULSE oder 0.1MM PULSE	50 EUR	AliExpress
Alu Flachstange: Stärke 5,0 mm Breite 20,0 mm Länge ca. 250 mm	5 EUR	Amazon oder Baumarkt
2x Rohrschelle 25-28 mm / 3/4" + M8x30mm Senkkopf + M8x10mm Senkkopf	8 EUR	Amazon oder Baumarkt
GESAMT	63 EUR	

Sensorauswahl

Prinzipiell können alle Regenmengensensoren verwendet werden, die einen Impuls bei jeder Kippbewegung der Wippe auslösen. Wir haben uns für den verlinkten Sensor von AliExpress entschieden, weil er gegenüber günstigeren Modellen einige Vorteile mitbringt. Trotz Recherche haben wir den echten Hersteller nicht herausgefunden. Er wird von verschiedenen Shops bei AliExpress angeboten und alle behaupten, dass sie der Hersteller seien. Mit großer Wahrscheinlichkeit

sind all diese "Hersteller" aber nur Onlinehändler.


Der Sensor ähnelt einem standardisierten Regenmesser nach Hellmann³⁾⁴⁾. Dieser hat eine Auffangfläche von 200 cm², die scharfkantig von der Umgebung abgetrennt ist und misst pro Kippbewegung der Wippe 0,1mm Regenmenge (entspricht 2 cm³). Der hier von uns verwendete Regenmesser hat eine Auffangfläche von 314 cm² (Durchmesser 200 mm) und misst 0,2mm Regenmenge. Ihr könnt auch die Variante mit 0,1mm pro Pulse/Kippbewegung kaufen - damit liegt man dann noch näher an einem Regenmesser nach Hellmann. Da die Auffangfläche aber hier auch leicht größer ist und ich einen nicht zu empfindlichen Regensensor haben wollte (Verschmutzung, Zugänglichkeit), hatte ich mich für die 0,2mm Variante entschieden.

Aus meiner Sicht ist der Sensor wirklich sehr gut verarbeitet: Die Wippe macht einen robusten Eindruck und scheint mir vom Design her sehr gut für einen guten Regenabfluss geeignet zu sein. Der Sensor hat ein Edelstahl-Sieb als Schmutz-Schutz (welches allerdings nur "lose" beiliegt → nicht optimal) sowie im Trichter nochmals kleine Abflussbohrungen, die nochmals verhindern, dass Verunreinigungen ins Innere gelangen können. Der verwendete Reedkontakt ist ein Markenprodukt, welches man unter der Bezeichnung "PS-3150" auch als Ersatzteil nachkaufen kann.

Zur horizontalen Montage ist eine sehr große und gut ablesbare Rund-Nivellier-Wasserwaage verbaut sowie 3 Nivellierschrauben (die wir aber nicht benötigen).

https://wiki.loxberry.de/ Printed on 2025/04/10 11:17

Gehäuse

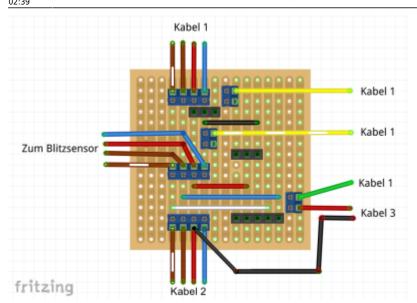
Es ist kein separates Gehäuse notwendig.

Zusammenbau

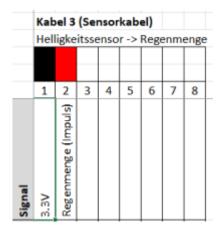
Der Sensor kommt vormontiert an. Ich habe ihn einmal geöffnet um mir das Innenleben anzuschauen. Dazu werden die 3 Schrauben außen am Gehäuse entfernt und dann kann man den Trichter vorsichtig abziehen.

Montage und Anschluss

Um den Sensor auf dem Halterungssystem zu montieren, benötigen wir ein 240mm langes Alu-Flachprofil. Nehmt ein Profil mit vernünftiger Stärke (z. B. 5mm), damit der schwere Regensensor einen vernünftigen Halt hat und permanent in Waage steht. Ein Fuß des Regensensors wird per Rohrschelle auf dem Halterungssystem montiert (mit 2 Kontermuttern), 2 Füße werden fest auf dem Aluprofil montiert. Das Aluprofil wiederum wird per Rohrschelle ebenfalls auf dem Halterungssystem montiert.


Über die Kontermuttern könnt ihr den Sensor dann später ausnivellieren.

https://wiki.loxberry.de/ Printed on 2025/04/10 11:17


2025/04/10 11:17 5/7 7a. Regenmenge

Das Kabel des Regensensors (Kabel 3) wird dann durch das Halterungssystem zum Helligkeitssensor geführt, wo es im Gehäuse mit angeschlossen wird.

Kabelbelegung Kabel 3 zum Regenmengensensor:

Anschluss Kabel 3 an der unteren 2er Klemmleiste:

1. Rot

Anschluss Kabel 3 an der unteren 4er Klemmleiste:

1. Schwarz (zweiter von rechts parallel zu 3.3V/Rot von Kabel 1)

Software

Zur Berechnung des korrekten Faktors für den Flowsensor des MultilO Plugins benötigen wir eine Formel der Form F (Hz) = FAKTOR * Q (mm/s). Damit wir die Formel leichter bestimmen können, habe ich ein kleines Excel-Tool erstellt - Download: regenmengenmesser.xlsx

In der Exceldatei müsst ihr oben die Regenmenge in mm pro Pulse des Sensors eintragen, also 0,2mm oder 0,1mm. Unter Formeln wird Euch dann die korrekte Formel für verschiedene Einheiten ausgerechnet. Wir verwenden die Einheit mm/10min. Der korrekte Faktor kann in Spalte E abgelesen werden. Unten unter Test wird dann mit der Formel gerechnet und man kann nachvollziehen, ob alles richtig berechnet wurde.

https://wiki.loxberry.de/ Printed on 2025/04/10 11:17

Beispiel für 0,2mm pro Pulse: F(Hz) = 0,0083 * Q(mm/10min)

4	Α	В	С	D	E	F	G	н
1								
2								
3	P	ro Pulse:	0,2	mm	(Datenblatt Regenmengenmesser)			
4								
5		Formeln:						
6		F	(Hz)	=	5	*	Q	(mm/s)
7				-	0,0833	*	Q	(mm/min)
8				-	0,0083	*	Q	(mm/10min)
9				=	0,0014	*	Q	(mm/60min)
10								
11		Test:						
12		Anzahl Pulse:			in	10	Minute(n)	
13								
14		Entspricht einer Menge von:				1	mm	
15		Entspricht:				0,00833	Hz	
16								
17		Ergebnisse:				0,00167	mm/s	
18		(es entstehen Rundungsfehler!)				0,10004	mm/1min	
19						1,00402	mm/10min	
20						5,95238	mm/1h	
21								

LoxoneConfig

1) 2)

Wikipedia: https://de.wikipedia.org/wiki/Niederschlagsmesser

3)

Spektrum.de: https://www.spektrum.de/lexikon/geographie/hellmann-regenmesser/3425

Meteorologyshop.eu:

https://www.meteorologyshop.eu/meteo-blog/grundlagen-der-niederschlagsmessung

From:

https://wiki.loxberry.de/ - LoxBerry Wiki - BEYOND THE LIMITS

Permanent link:

https://wiki.loxberry.de/howtos_knowledge_base/loxberry_wetterstation/7_rain_amount?rev=1728261585

Last update: 2024/10/07 02:39